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Abstract. In global optimization, a typical population-based stochastic searchmethodworks on a set
of sample points from the feasible region. In this paper, we study a recently proposed method of this
sort. The method utilizes an attraction-repulsion mechanism to move sample points toward optimality
and is thus referred to as electromagnetism-like method (EM). The computational results showed
that EM is robust in practice, so we further investigate the theoretical structure. After reviewing the
original method, we present some necessary modifications for the convergence proof. We show that
in the limit, the modified method converges to the vicinity of global optimum with probability one.
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1. Introduction

Global optimization problems arise in many practical applications [12, 15]. Des-
pite its importance and the efforts invested so far, the situation with respect to
algorithm development for solving general global optimization problems is still
not satisfactory.
To locate a global optimum among many local optima, various stochastic search

methods have been proposed. Commonly used algorithms include simulated an-
nealing [8], multilevel methods [9], evolutionary methods [11] and partitioning
methods [18]. These methods utilize a stochastic mechanism to search for better
bounds on an objective function to be optimized. Some of these methods may com-
bine the search process with local refinements like hill-climbing or gradient-based
methods [6].
One school of the stochastic search uses a single point to guide the search.

A well-known example is the simulated annealing. Whereas another school uses
a population of solutions and proceeds according to relative efficiencies of the
observed functional values, like the genetic algorithms.
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Recently, Birbil and Fang proposed a new population-based stochastic search
algorithm [2, 3]. The method is called electromagnetism-like method, (EM), which
utilizes an attraction-repulsion mechanism to move a population of points toward
optimality.
Thisproposedmethodworksonthenonlinearoptimizationproblemswithbounded

variables in the following form:

min f �x�
s. t. x∈S (1)

where f ��n→� is a nonlinear function and

S=�x∈�n �−�<lk�xk�uk<�k=1���n� (2)

is a bounded feasible region.
The original EM was compared with other well-known methods and shown to

have substantial performance [2]. However it lacks a convergence proof. In this
paper, we show that a modified EM exhibits global convergence with probability
one [3].
There are several convergence results for stochastic search methods used in

global optimization [1, 4, 13]. In an early work, Yakowitz and Fisher studied a gen-
eral framework for the conditions of convergence of stochastic search algorithms
[19]. Rudolph has discussed a framework to study the convergence properties of
an evolutionary algorithm (EA). He proposed a set of conditions under which a
typical EA converges to the set of �-optimal solutions with probability one [14].
A successful stochastic search method has to be carefully designed such that

regardless of the starting point, there exists a nonzero probability to visit any subset
(with a positive volume) of the feasible region. Rudolph’s Lemma 1 confirms the
necessity of this general principle. We have a similar lemma (Lemma 1 of Section
4) showing that a specially designed version of EM indeed exhibits this important
property. With this result, the convergence result follows in Theorem 3.
The paper is organized as follows. In Section 2, the main procedures of EM are

reviewed. The required modifications for convergence results are given in Sec-
tion 3. The proof of convergence of the modified EM appears in Section 4. Some
concluding remarks are given in the final section.

2. Review of Electromagnetism-like Method (EM)

We assume that for the problem in (1), the following parameters are given: the
dimension of the problem (n), the pointer to the function (f �x�), and the lower
and upper bounds (lk, uk) for k=12··· n. Since EM works on a set of
sample-points (population), there is an additional predetermined parameter, m,
which denotes the number of points in the population.
The general scheme of the method is given in Algorithm 1. In this scheme an

iteration of the algorithm corresponds to one pass of the while loop. There exist
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four procedures: Initialize, Local, CalcF, andMove. The first procedure, Initialize,
is used for sampling m points from the feasible region and assigning them their
initial objective function values. Local is a neighborhood search procedure, which
can be applied to one or many points for local refinement at each iteration. The
selection of these two procedures do not affect the convergence result that we will
present. Therefore, we omit the description of these two procedures and refer the
readers to [2]. The remaining procedures CalcF and Move are carefully explained
in the following subsections.

ALGORITHM 1. EM(m)

1: Initialize()
2: while termination criteria are not satisfied do
3: Local()
4: CalcF()
5: Move()
6: end while

We adopt the notation, xi∈�n, to specify the ith point of the population. Among
these points at the current iteration, there is a particular one that has the best ob-
jective function value. We call this point the current best point and denote it by
xbest.

2.1. CALCULATION OF TOTAL FORCE VECTOR (calcf)

In each iteration of the algorithm, a total force vector is calculated at each point.
This vector determines the direction of movement for the corresponding point at
the subsequent iterations.
The steps of the CalcF procedure are given in Algorithm 2. In order to compute

the force between two points, we assign a charge-like value, qi, to each point (line
2, Algorithm 2). The charge of the point is calculated according to the relative
efficiency of the objective function values in the current population, i.e.,

qi=exp


−n× f �xi�−f �xbest�

m∑
k=1
�f �xk�−f �xbest��


 i=12���m� (3)

In this way the points that have better objective function values possess higher
charges. Though we attach no sign to this value, it determines the magnitude of
attraction or repulsion for the corresponding point i.
This leads to the computation of the vector, F ij , between any pair of points xi

and xj (line 8, Algorithm 2). The magnitude of this “component force” is inversely
proportional to the Euclidean distance between the points and directly proportional
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to the product of their charges. Recall that there are no signs attached to the charges,
but we decide the direction of the force between two points after comparing their
objective function values. This means, between two points the one which has a
better objective function value attracts, whereas the point with worse objective
function value repels (lines 10 and 12 respectively, Algorithm 2). The computation
is given by

F ij =
{
�xj−xi� qiqj


xj−xi
2  if f �x
j�<f�xi�

�xi−xj� qiqj


xj−xi
2  if f �x
i��f �xj�

 i=12���m� (4)

Finally, the total force vector F i exerted on each point is calculated by adding
the individual component forces, i.e.,

F i=
m∑
j �=i
F ij  i=12���m� (5)

2.2. MOVEMENT ALONG THE TOTAL FORCE VECTOR (move)

After evaluating the total force vector F i, the point i is moved in the direction of
the force by a random step length as in equation (6). In this equation, � the random
step length, is assumed to be uniformly distributed between 0 and 1. RNG denotes
the allowed range of movement toward the lower bound lk, or the upper bound uk,
for the corresponding dimension. Furthermore, the force exerted on each particle
is normalized so that the feasibility is maintained.

xi=xi+� F i


F i
�RNG�i=12���m and i �=best� (6)

ALGORITHM 2. CalcF()

1: for i=1 tom do
2: qi←exp�−n f�xi�−f �xbest �∑m

k=1�f �x
k�−f �xbest �� �

3: F i←0
4: end for
5: for i=1 tom do
6: for j=1 tom do
7: if i �=j then
8: F ij←�xj−xi� qiqj


xj−xi
2
9: if f �xj�<f�xi� then

10: F i←F i+F ij �Attraction�
11: else
12: F i←F i−F ij �Repulsion�
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13: end if
14: end if
15: end for
16: end for

ALGORITHM 3. Move()

1: for i=1 to m do
2: if i �=best then
3: �← U�01�
4: F i← F i


F i

5: for k=1 to n do
6: if F ik>0 then
7: xik←xik+�F ik�uk−xik�
8: else
9: xik←xik+�F ik�xik−lk�

10: end if
11: end for
12: end if
13: end for

Algorithm 3 shows the steps of the procedure. Note that the best point, xbest, is not
moved and is carried to the subsequent iterations (line 2, Algorithm 3).

2.3. TERMINATION CRITERIA

In [2] the EM procedure was terminated by using a predetermined maximum num-
ber of iterations. Another termination criterion that might be used is the successive
number of iterations spent without changing the current best point. In other words,
if the current best point is not changed for a certain number of iterations, the al-
gorithm may be stopped. In the literature several other stopping conditions have
also been studied [7, 17].
In this paper, we show that a revised version of EM terminates with an “�-

optimal” solution when the maximum number of iterations is set to be large enough
(this concept will be revisited in Section 4).

3. Modifications on the Original Method

Before introducing the modifications, we discuss the necessity of the changes by
elaborating on “premature convergence”.
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Figure 1. An example of premature convergence in one dimensional space.

3.1. PREMATURE CONVERGENCE

The premature convergence may occur when the forces exerted on the particles
omit some parts of the feasible region. We illustrate this phenomenon by an ex-
ample.
In Figure 1, the function has the optimum at 0, and it has a high peak that is

close to this point. After the peak, the function is monotonically decreasing. If all
the points in the current population were located on the right hand side of the peak,
in the original EM all points would be directed toward the right, which would end
up with a local minimizer, and the algorithm would converge prematurely.
In order to preclude premature convergence, we have to somehow “perturb” the

current population so that at least one of the points will have a chance to move
to the possibly omitted parts of the feasible region. Hence, one of the points in the
population other than the current best point will be selected as the “perturbed point”
and denoted by xp. Next, the CalcF procedure is modified to take into account this
perturbed point.

3.2. PERTURBED POINT AND MODIFIED calcf

The modified CalcF procedure is given in Algorithm 4. Note that a new parameter
)∈�01� is introduced, which will be described below.
The perturbed point, xp is selected as the farthest point from the current best

point, xbest in the current population (line 1, Algorithm 4), i.e.,

xp=argmax�
xbest−xi
i=12���m�� (7)
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The calculation of the total force vector remains the same for all points except
xp. For xp, the component forces are perturbed by a random number �, i.e.,

F
p
j =

{
�xj−xp� �qpqj


xj−xp
2  if f �x
j�<f�xp�

�xp−xj� �qpqj


xj−xp
2  if f �x
p��f �xj�

(8)

where � is uniformly distributed between 0 and 1 (lines 12–13, Algorithm 4). Also,
the directions of the component forces are perturbed; that is, if the random variable
� is less than the parameter ) then the direction of the component force is reversed
(lines 14–16, Algorithm 4). Consequently, there exists one point in the population
for which the direction of movement may be reversed.
We remark that Algorithm 4 may be replaced by a simpler procedure, which

chooses any point from the population other than the xbest and perturbs it with a
Gaussian distribution. In fact this is the most common way used by population-
based algorithms [5]. However, we consider Algorithm 4 so that the modification
is consistent with the main motivation of the proposed method, i.e., an attraction–
repulsion mechanism is utilized for the modification as well. We also remark that
any point other than the xbest can be selected as the perturbed point. We select the
farthest point from the current best point, because intuitively the attractive force on
this point due to xbest would be weaker than the attractive force on the other points.
Hence, a perturbation on this point would be reasonable.

ALGORITHM 4. CalcF())

1: xp←argmax�
xbest−xi
i=12���m�
2: for i=1 tom do
3: qi←exp�−n f�xi�−f �xbest �∑m

k=1�f �x
k�−f �xbest �� �

4: F i←0
5: end for
6: for i=1 to m do
7: for j=1 to m do
8: if i �=j then
9: if xi �=xp then
10: F ij←�xj−xi� qiqj


xj−xi
2
11: else
12: �←U�01�
13: F ij←�xj−xi� �qiqj


xj−xi
2
14: if �<) then
15: F ij←−F ij �ReverseDirection�
16: end if
17: end if
18: if f �xj�<f�xi� then
19: F i←F i+F ij �Attraction�
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20: else
21: F i←F i−F ij �Repulsion�
22: end if
23: end if
24: end for
25: end for

4. Convergence Results for the Modified EM

The steps of the modified EM is given in Algorithm 5. In this scheme N denotes
the predetermined parameter, maximum number of iterations, i.e., the algorithm
terminates when the total number of iterations exceeds N .
Notice that the neighborhood search procedure Local is not included in this

revised version, since it does not effect the convergence proof. Our task is to show
that in the long run (i.e., when N→�) the modified method converges to the
set of global optima with probability one. In the following sections, we give the
convergence proof after introducing the notation.

ALGORITHM 5. EM(m, ))

1: Initialize()
2: iteration← 1
3: while iteration � N do
4: CalcF())
5: Move()
6: iteration← iteration + 1
7: end while

4.1. NOTATION AND ASSUMPTIONS

Let f ��n→� and S⊂�n be as in (1) and (2), respectively. Then x∗ ∈�n is
called a global minimum solution on S, if

x∗ ∈S and f �x∗��f �x�∀x∈S� (9)

This leads to the definition of the set of points that are in the vicinity of global
minimum. Given �>0, the set of �-optimal solutions is defined by

B∗
�=�x∈S � �f �x�−f �x∗������ (10)

In our derivation we make the following assumptions:
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(1) B∗
� contains an open ball of full dimensionality, i.e., -�B∗

��>0, where - is
the Lebesgue measure on �n.

(2) f �S→� is a lower bounded measurable function with respect to the
Lebesgue measure -.

(3) The collection of vectors (corresponding to the m (m�n+1) points in the
current population) at every iteration generated by the algorithm has full rank,
i.e.,

rank��x1x2���xm��=n� (11)

Recall that the proposed method (Algorithm 5) utilizes a stochastic search mech-
anism with a population of points. Thus, there exists an underlying stochastic
process, which depends on the location of the m points in the feasible region S.
Formally, if we define Yk as the random variable corresponding to the collection

of m vectors at iteration k, then the stochastic process generated by the algorithm
becomes the family of random variables �Yk/k=012···�. Also, the collection
of these m vectors corresponds to the state of the process. Hence, we define the
state space as

�m��x �x=�x1x2���xm� xi∈S i=12���m� (12)

where x denotes a state. In this setting, the random variable Yk gives the state of
the process at iteration k.
Notice that, in the algorithm the location of the points at the next iteration de-

pends only on the current population. Therefore, the stochastic process generated
by the algorithm constitutes a time homogeneous Markov Chain [16]. This leads
to the definition of the transition probability 0�xA�; for any given x∈�m, and
A⊂S

0�xA��P�2A�Yk+1� �=0 �Yk=x� (13)

evaluates the conditional probability of making a transition from state x into a state
that has at least one point in A, where

2A�x��
m∑
i=1

1A�x
i� (14)

gives the number of points in A∩x. 1A is the indicator function for set A, i.e.,
1A�x

i� returns 1 if xi is in A and returns 0 otherwise.
Remember that the main modification on the original method is the addition of

the perturbed point, xp. This point plays an essential role in the convergence proof,
so we introduce additional notation related to xp. Let d∈�n be any direction, then

L�xpd���x�5� �x�5�=xp+5d∈�n 5�0� (15)
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Figure 2. Truncated Cone in �2.

denotes the ray originated at xp and directed along d. Furthermore, for any given
subset A of S, we define

C�xpA���x �x∈L�xpy−xp�∩S for some y∈A� (16)

as the truncated cone pointed at xp (Figure 2).

4.2. CONVERGENCE WITH PROBABILITY ONE

Before we present the convergence proof, let us first define the concept of conver-
gence for the modified method. Given �>0, if there exists an integer K����0
such that

2B∗� �Yk� �=0 ∀k>K��� (17)

then the modified EM (Algorithm 5) is said to converge to the set of �-optimal
solutions.

4.3. CONVERGENCE PROOF

Recall the definition of 0�xA� in (13), we further define

0∗�A�� inf
x∈�m

�0�xA�� (18)

for a given subset A of S.

LEMMA 1. Given A⊂S, if A contains an open ball of full dimensionality in S,
then

0∗�A�>0� (19)
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Proof. Let x∈�m and without loss of generality let m=n+1. We want to
show that at each iteration at least one point from x has a positive probability to
move into set A.
By assumption 3, when we focus on the perturbed point xp, the component

forces Fpj become a basis. Using a combination of the component forces, xp may
be moved into A in three steps:

(1) Some of the directions of the component forces are reversed (Algorithm 4,
lines 14-16).

(2) A direction vector that falls into C�xpA� is generated (Figure 2).
(3) An appropriate step length to displace xp into A is calculated.

Next we show that there exist nonzero lower bounds on the probabilities of these
steps.

Step 1. By hypothesis, there exists a ball Br⊂A with its radius r >0 being small
enough such that Br lies in the nonnegative combination of the component
forces at xp. Let 91�x� denote the probability for reversing the directions of
some of the component forces so that Br lies in the nonnegative combination
of the component forces. Note that in Algorithm 4 (line 14) the probability of
reversing each component force is )∈�01�. Therefore, the lower bound on
the probability of Step 1 is

0<9∗1�min��1−)�n)n��91�x�� (20)

Step 2. Let B: be a closed ball with radius :>0 in Br , i.e.,

B:⊂Br⊂A� (21)

The proper selection of B: will become apparent shortly.
Let H�x� be the set generated by the component forces, Fpj , i.e.,

H�x���x �x=
m∑
j �=p
<iF

p
j <i∈ �01��� (22)

Equation (8) shows that the component forces are perturbed with uniformly
distributed numbers between 0 and 1. As illustrated in Figure 3, let

T�x��-�H�x�∩C�xpB:�� (23)

then the probability of generating a total force vector that lies in C�xpB:� is

92�x��
-�T�x��
-�H�x�∩S�� (24)
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Figure 3. Calculation of the probability for Step 2 in �2.

The value of 92�x� decreases as the denominator increases and the numerator
decreases. The upper bound of the denominator is the volume of S, i.e.,

-�H�x�∩S��
n∏
k=1

�uk−lk�� (25)

In (24), the volume of T�x� depends on the volume of the H�x�, and the
distance between B: and x

p. Let,

>� inf
x∈B:
�
x−xp
�� (26)

be the distance between B: and x
p. Since S is bounded, we have

>�>∗� sup
xy∈S

�
x−y
�� (27)

Also note that by (22), the volume of H�x� decreases as the lengths of the
component force vectors decrease. Let us define,

?�min
j �=p


Fpj 
� (28)

By Equation (8) we have


Fpj 
=
qpqj


xj−xp
  (29)

where the charges of the points are evaluated as in equation (3). Note that in
(3), the fraction in the exponential function is between 0 and 1. Hence, the
lower bound on the charge of any point is q∗�e−n. By using (27), we have

0<?∗�
�q∗�2

>∗ �?� (30)
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Figure 4. Calculation of the lower bound for -�T�x�� in �2.

In Figure 4, the distance between xp and the center of B: is replaced by its
over-estimate >∗ and similarly the length of the component forces is illustrated
with its under-estimate ?∗ so that the derivation of the lower bound for the
numerator of (24) can be shown. As indicated in the figure, we can select :
small enough such that a cube with side b, Vb resides in T�x�. Note that this
result can be further generalized to the n dimensional case as

bn=-�Vb��-�T�x��� (31)

Next we show that b is bounded away from 0. After the cube is selected, a, d
and h are defined as in Figure 4. From the figure, we see a�h, d�: and

b�
ad

>∗ � (32)

With : sufficiently small, the Pythagoras theorem implies

h2+�?∗−b�2 � �?∗�2 (33)

a�h �
√
2b?∗−b2 (34)

Substituting the lower bounds of a and d into (32) gives

b�
:
√
2b?∗−b2
>∗ (35)
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Hence,

b2 �
:2�2?∗b−b2�

�>∗�2
(36)

�>∗�2b2 � 2?∗b:2−b2:2 (37)

b��>∗�2+:2� � 2?∗:2 (38)

b �
2?∗:2

�>∗�2+:2 � (39)

Consequently, the lower bound on b becomes

b∗�
2?∗:2

�>∗�2+:2 � (40)

This further leads to

0<�b∗�n�-�Vb��-�T�x��� (41)

Therefore, the lower bound on the probability of Step 2 is

0<9∗2�
�b∗�n

n∏
k=1
�uk−lk�

�92�x�� (42)

Step 3. Let L�xpF p� be the ray originated at xp and directed along Fp (Figure 3).
In Algorithm 3 the perturbed point is moved along the total force vector by a
uniformly distributed step length (between 0 and up/down to the boundaries).
Hence, let

L�xpF p�∩ABr��y1y2� and L�xpF p�∩AS��z� (43)

where ABr and AS denote the boundaries of the Br and S, respectively. Then,
the probability of moving into A is

93�x��

y1−y2


xp−z
 � (44)

As illustrated in Figure 5, if we define

r∗�
√
r2−:2 (45)

then

0<2r∗�
y1−y2
� (46)

Therefore, by using (27) the lower bound on the probability of Step 3 is

0<9∗3�
2r∗

>∗ �93�x�� (47)
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Figure 5. The calculation of r∗ in �2.

Therefore we have shown that

0<9∗19
∗
29

∗
3�0

∗�A�� (48)

This completes the proof of the lemma. �
Assumption 1 ensures that B∗

� contains an open ball of full dimensionality.
Therefore, there exists a nonzero probability for the population at any given it-
eration to move into the set of �-optimal solutions in one iteration.
The next lemma shows that at any iteration, if one of the points is in B∗

� then at
subsequent iterations there always exists at least one point residing in B∗

�. Intuit-
ively, this reflects an absorbing event for the algorithm.

LEMMA 2. Given any state x∈�m and k�0 if 2B∗� �Yk� �=0 then P�2B∗� �Yk+1� �=
0 �Yk=x�=1 .
Proof. Suppose at iteration k,

Yk=x and 2B∗� �Yk� �=0 (49)

then we know that xbest∈B∗
�. Algorithm 3 (line 2) ensures that unless another

point observes a better objective function value than that of xbest, the current best
point in B∗

� remains at iteration k+1. If not, then xbest is replaced by this new
point, which again resides in B∗

�. Thus,

2B∗� �Yk+1� �=0� (50)

This completes the proof of the lemma. �

We are now ready to prove that the modified EM converges to the set of �-
optimal solutions with probability one.
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THEOREM 1. Provided that the assumptions in Section 4.1 hold, Algorithm 5
converges to B∗

� with probability one, i.e.,

lim
k↑�
P�2B∗� �Yk� �=0�=1� (51)

Proof. The Markovian property of the stochastic process and Lemma 2 imply
that

P�2B∗� �Yk�=0� =P�2B∗� �Y1�=02B∗� �Y2�=0··· 2B∗� �Yk�=0�

=P�2B∗� �Y1�=0�
k∏
l=2
P�2B∗� �Yl�=0 �2B∗� �Yl−1�=0�

(52)

Since we have a time homogeneous Markov Chain, it is sufficient to compute only

P�2B∗� �Yl�=0 �2B∗� �Yl−1�=0�� (53)

Let us define

D=�x �2B∗� �x�=0� (54)

then we have,

P�2B∗� �Yl�=0 �2B∗� �Yl−1�=0� = P�2B∗� �Yl−1�=02B∗� �Yl−1�=0�

P�2B∗� �Yl�=0�

=
∫
DP�2B∗� �Yl�=0�Yl=y�P�Yl−1=y�-�dy�∫

DP�Yl−1=y�-�dy�
(55)

Following (18), let 0∗�B∗
��=0∗, and by Lemma 1, we have

P�2B∗� �Yl�=0 �Yl−1=y���1−0∗� ∀y∈D� (56)

Hence (55) becomes

P�2B∗� �Yl�=0 �2B∗� �Yl−1�=0� � �1−0∗�∫DP�Yl−1=y�-�dy�∫
DP�Yl−1=y�-�dy�=�1−0∗�� (57)

Substituting (57) into (52), we get

P�2B∗� �Yk�=0���1−0∗�k� (58)

By Lemma 2, we have

lim
k↑�
P�2B∗� �Yk� �=0� =1−lim

k↑�
P�2B∗� �Yk�=0�

�1−lim
k↑�
�1−0∗�k=1�

(59)

This completes the proof of the theorem. �



CONVERGENCE OF A POPULATION-BASED GLOBAL OPTIMIZATION ALGORITHM 317

4.4. COMPUTATIONAL CONSIDERATIONS

The main theorem shows that Algorithm 5 eventually reaches an �-optimal solu-
tion. If we consider the output of the algorithm in each iteration as a sequence of
Bernoulli trials, then the average number of failures before the first success can be
calculated [10]. By Lemma 1, the probability of success is 0∗�B∗

��. Therefore the
average number of failures before the first success is �1−0∗�B∗

���/0
∗�B∗

��.
Again for computational study, we need to discuss two possible overflow prob-

lems. First, recall that the charge of each point is calculated by (3). Hence, if the
objective function attains very high values, the fraction may become too small and
cause an overflow problem in calculating the exponential function. This problem
can be avoided by assigning a large floating point value (depending of the word
length of the particular computer) to the points with very high objective function
values. Second, if the distance between two points is close to zero, then there may
be an overflow problem due to the denominator of the fractions in equations (4)
and (8). This can be also avoided by setting a small enough number to the distance
between these points according to the word length of the computer.

5. Conclusion

In this paper, a convergence property of the recently proposed electroma-gnetism-
like method, (EM) has been studied [2]. Our main task has been to show that when
the number of iterations is large enough, one of the points in the current population
moves into the �-neighborhood of the global optimum. In order to achieve this
result, we have given a detailed mathematical construction, which could be easily
applied to some of the other population-based stochastic search algorithms.
The proposed method deals with global optimization problems with bound con-

straints only. For further research, we will consider the method for optimization
problems with general constraints. We are also interested in developing a discrete
counterpart for combinatorial optimization problems.
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